The metabolism and disposition of the oral direct thrombin inhibitor, dabigatran, in humans.
نویسندگان
چکیده
The pharmacokinetics and metabolism of the direct thrombin inhibitor dabigatran (BIBR 953 ZW, beta-alanine, N-[[2-[[[4-(aminoiminomethyl)phenyl]amino]methyl]-1-methyl-1H-benzimidazol-5-yl]carbonyl]-N-2-pyridinyl) were studied in 10 healthy males, who received 200 mg of [(14)C]dabigatran etexilate (BIBR 1048 MS, the oral prodrug of dabigatran) or an i.v. infusion of 5 mg of [(14)C]dabigatran. Radioactivity was measured in plasma, urine, and feces over 1 week. The metabolite pattern was analyzed by high-performance liquid chromatography with on-line radioactivity detection, and metabolite structures were elucidated by mass spectrometry. Dabigatran etexilate was rapidly converted to dabigatran, with peak plasma dabigatran concentrations being attained after approximately 1.5 h; the bioavailability of dabigatran after p.o. administration of dabigatran etexilate was 7.2%. Dabigatran was predominantly excreted in the feces after p.o. treatment and in the urine after i.v. treatment. The mean terminal half-life of dabigatran was approximately 8 h. The predominant metabolic reaction was esterase-mediated hydrolysis of dabigatran etexilate to dabigatran. Phase I metabolites accounted for <or=0.6% of the dose in urine and 5.8% of the dose in feces following p.o. administration and <or=1.5 and 0.2%, respectively, following i.v. administration. Dabigatran acylglucuronides accounted for 0.4 and 4% of the dose in urine after p.o. and i.v. dosing, respectively. In vitro experiments confirmed that dabigatran etexilate is metabolized primarily by esterases and that cytochrome P450 plays no relevant role. These findings suggest that pharmacologically active concentrations of dabigatran are readily achieved after p.o. administration of dabigatran etexilate and that the potential for clinically relevant interactions between dabigatran and drugs metabolized by cytochrome P450 is low.
منابع مشابه
Dabigatran etexilate - A novel oral anticoagulant for bleeding complications
Thromboembolic disease is a common cause of morbidity and mortality. Thrombin plays a key role in thrombotic events and thrombin inhibition represents a therapeutic event for thromboembolic events and has been identified as a target of therapy of its pivotal role in coagulation process. Anticoagulation is a major intervention for the management of arterial and venous thromboembolic events. Dabi...
متن کاملConservative Management of Dabigatran Overdose: Case Report and Review of Literature
Background: Direct thrombin inhibitors and factor Xa inhibitors are gaining popularity as alternatives to warfarin for patients requiring anticoagulation. Toxicity due to these medications is difficult to manage because overdose experience is very limited and there is no clear guidance on when or whether to use antidote in this setting. Case Presentation: A 50-year-old man with normal renal fu...
متن کاملPlasma-diluted thrombin time to measure dabigatran concentrations during dabigatran etexilate therapy.
New anticoagulants, like the orally available direct thrombin inhibitor (DTI) dabigatran etexilate, have recently been introduced into the market for venous thromboembolic prophylaxis and for stroke prevention in atrial fibrillation. While dabigatran has been approved for use without the need for routine therapeutic monitoring, there are clinical scenarios in which monitoring can help guide cli...
متن کاملDiagnostic Accuracy of a Novel Chromogenic Direct Thrombin Inhibitor Assay: Clinical Experiences for Dabigatran Monitoring.
Background Direct oral anticoagulants (DOACs) are increasingly replacing vitamin K antagonists (VKA) for clinical indications requiring long-term oral anticoagulation. In contrast to VKA, treatment with DOAC including dabigatran—the only direct thrombin inhibitor amongst them—does not require therapeutic drug monitoring. However, in case of treatment complications (e.g., major haemorrhage) and ...
متن کاملCharacterization of thrombin-bound dabigatran effects on protease-activated receptor-1 expression and signaling in vitro.
Thrombin, the key effector protease of the coagulation cascade, drives fibrin deposition and activates human platelets through protease-activated receptor-1 (PAR1). These processes are critical to the progression of thrombotic diseases. Thrombin is the main target of anticoagulant therapy, and major efforts have led to the discovery of new oral direct inhibitors of thrombin. Dabigatran is the f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 36 2 شماره
صفحات -
تاریخ انتشار 2008